The Columbia University single-ion microbeam.

نویسندگان

  • G Randers-Pehrson
  • C R Geard
  • G Johnson
  • C D Elliston
  • D J Brenner
چکیده

A single-ion microbeam facility has been constructed at the Columbia University Radiological Research Accelerator Facility. The system was designed to deliver defined numbers of helium or hydrogen ions produced by a van de Graaff accelerator, covering a range of LET from 30 to 220 keV/microm, into an area smaller than the nuclei of human cells growing in culture on thin plastic films. The beam is collimated by a pair of laser-drilled apertures that form the beam-line exit. An integrated computer control program locates the cells and positions them for irradiation. We present details of the microbeam facility including descriptions of the collimators, hardware, control program, and the various protocols available. Various contributions to targeting and positioning precision are discussed along with our plans for future developments. Beam time for outside users is often available (see www.raraf.org).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Columbia University microbeam II endstation for cell imaging and irradiation

The Columbia University Microbeam II has been built to provide a focused ion beam for irradiating designated mammalian cells with single particles. With the interest in irradiating non-stained cells and cells in three-dimensional tissue samples, the endstation was designed to accommodate a variety of imaging techniques, in addition to fluorescent microscopy. Non-stained cells are imaged either ...

متن کامل

Ion, X-ray, UV and Neutron Microbeam Systems for Cell Irradiation.

The array of microbeam cell-irradiation systems, available to users at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University, is expanding. The HVE 5MV Singletron particle accelerator at the facility provides particles to two focused ion microbeam lines: the sub-micron microbeam II and the permanent magnetic microbeam (PMM). Both the elect...

متن کامل

Development of a secondary-electron ion-microscope for microbeam diagnostics

We describe a novel secondary-electron ion microscope (SEIM), designed for diagnostics of the upcoming submicron Columbia University charged-particle microbeam. This secondary-electron ion microscope allows much higher resolutions, at higher single particle detection efficiencies, than previously available, for rapid and accurate diagnostics of sub-micron charged-particle beams. Based on ion el...

متن کامل

Testing the stand-alone microbeam at Columbia University.

The stand-alone microbeam at Columbia University presents a novel approach to biological microbeam irradiation studies. Foregoing a conventional accelerator as a source of energetic ions, a small, high-specific-activity, alpha emitter is used. Alpha particles emitted from this source are focused using a compound magnetic lens consisting of 24 permanent magnets arranged in two quadrupole triplet...

متن کامل

UV microspot irradiator at Columbia University.

The Radiological Research Accelerator Facility at Columbia University has recently added a UV microspot irradiator to a microbeam irradiation platform. This UV microspot irradiator applies multiphoton excitation at the focal point of an incident laser as the source for cell damage, and with this approach, a single cell within a 3D sample can be targeted and exposed to damaging UV. The UV micros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Radiation research

دوره 156 2  شماره 

صفحات  -

تاریخ انتشار 2001